Aberrant intermolecular disulfide bonding in a mutant HLA-DM molecule: implications for assembly, maturation, and function.

نویسندگان

  • R Busch
  • R C Doebele
  • E von Scheven
  • J Fahrni
  • E D Mellins
چکیده

HLA-DM (abbreviated DM) is an MHC-encoded glycoprotein that catalyzes the selective release of peptides, including class II-associated invariant chain peptides, from MHC class II molecules. To perform its function, DM must assemble in the endoplasmic reticulum (ER), travel to endosomes, and interact productively with class II molecules. We have described previously an EBV-transformed B cell line, 7.12.6, which displays a partial Ag presentation defect and expresses a mutated DM beta-chain with Cys79 replaced by Tyr. In this study, we show that HLA-DR molecules in 7.12.6 have a defect in peptide loading and accumulate class II-associated invariant chain peptides (CLIP). Peptide loading is restored by transfection of wild-type DMB. The mutant DM molecules exit the ER slowly and are degraded rapidly, resulting in greatly reduced levels of mutant DM in post-Golgi compartments. Whereas wild-type DM forms noncovalent alphabeta dimers, such dimers form inefficiently in 7.12.6; many mutant DM beta-chains instead form a disulfide-bonded dimer with DM alpha. Homodimers of DM beta are also detected in 7.12.6 and in the alpha-chain defective mutant, 2.2.93. We conclude that during folding of wild-type DM, the native conformation is stabilized by a conserved disulfide bond involving Cys79beta and by noncovalent contacts with DM alpha. Without these interactions, DM beta can form malfolded structures containing interchain disulfide bonds; malfolding is correlated with ER retention and accelerated degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of intermolecular disulfide bonding in deposition of GP140 in the extracellular matrix

Human WI-38 fibroblasts in cultures synthesized at least three molecular forms of the major, extracellular matrix glycoprotein (GP), GP140: (a) cytoplasmic GP140 (1.2 ng of GP140/micrograms of cell protein) was detergent-soluble, underglycosylated, and possessed detectable levels of intermolecular disulfide bonding; (b) matrix GP140 (3.6 ng of GP140/micrograms of cell protein) was detergent-ins...

متن کامل

Role of Disulfide Cross-Linking of Mutant SOD1 in the Formation of Inclusion-Body-Like Structures

BACKGROUND Pathologic aggregates of superoxide dismutase 1 (SOD1) harboring mutations linked to familial amyotrophic lateral sclerosis (fALS) have been shown to contain aberrant intermolecular disulfide cross-links. In prior studies, we observed that intermolecular bonding was not necessary in the formation of detergent- insoluble SOD1 complexes by mutant SOD1, but we were unable to assess whet...

متن کامل

Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS.

Transgenic mice that model familial (f)ALS, caused by mutations in superoxide dismutase (SOD)1, develop paralysis with pathology that includes the accumulation of aggregated forms of the mutant protein. Using a highly sensitive detergent extraction assay, we traced the appearance and abundance of detergent-insoluble and disulfide cross-linked aggregates of SOD1 throughout the disease course of ...

متن کامل

Differences in RDS trafficking, assembly and function in cones versus rods: insights from studies of C150S-RDS.

Cysteine 150 of retinal degeneration slow protein (RDS) mediates the intermolecular disulfide bonding necessary for large RDS complex assembly and morphogenesis of the rim region of photoreceptor outer segments. Previously, we showed that cones have a different requirement for RDS than rods, but the nature of that difference was unclear. Here, we express oligomerization-incompetent RDS (C150S-R...

متن کامل

One-dimensional self-assembly of a water soluble perylene diimide molecule by pH triggered hydrogelation.

A water soluble perylene diimide molecule has been fabricated into nanofibers via a pH triggered hydrogelation route. The one-dimensional self-assembly is dominated by the intermolecular π-π stacking interactions in concert with the hydrogen bonding between the carboxylic acid side chains. The anisotropic electronic and optical properties observed for the nanofibers are consistent with the one-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 160 2  شماره 

صفحات  -

تاریخ انتشار 1998